Accessibility Tools

  • Content scaling 100%
  • Font size 100%
  • Line height 100%
  • Letter spacing 100%

References

If you are looking for more information on the upconversion process and Pr3+-based materials, we have provided a list of key references on these topics below.

 

Luminescence in general:
  1. Blasse, G. and Grabmaier, B.C. (1994) Luminescent materials. Berlin: Springer. doi:https://doi.org/10.1007/978-3-642-79017-1.

  2. Kaminskiĭ, A.A. (1996) Crystalline lasers: Physical processes and operating schemes. Boca Raton, Fla: CRC Press. doi: https://doi.org/10.1201/9781003067962.

  3. Liu, R.-S. and Wang, X. (2022) Phosphor handbook. luminescent and applied materials. 3rd edn. Boca Raton: CRC Press. doi: https://doi.org/10.1201/9781003098690

 
Upconversion process:
  1.  Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem Rev 2004, 104, 139–173, doi: https://doi.org/10.1021/cr020357g.
  2. Haase, M. and Schäfer, H. Upconverting nanoparticles, Angewandte Chemie International Edition 2011, 50(26), pp. 5808–5829. doi:https://doi.org/10.1002/anie.201005159.

  3. Pollnau, M. et al. (2000) ‘Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems’, Physical Review B, 61(5), pp. 3337–3346. doi:https://doi.org/10.1103/PhysRevB.61.3337.

  4. Dramićanin, M.D. et al. (2025) ‘Pr3+ visible to ultraviolet upconversion for antimicrobial applications’, Nanomaterials, 15(7), p. 562. doi:https://doi.org/10.3390/nano15070562.

  5. Li, L. et al. (2024) ‘Pr3+‐based visible‐to‐ultraviolet upconversion. A minireview’, Advanced Physics Research, 4(2). doi: https://doi.org/10.1002/apxr.202400097. 

 
The 5d configuration in lanthanide ions:
  1.  Dorenbos, P. (2000) ‘The 5D level positions of the trivalent lanthanides in inorganic compounds’, Journal of Luminescence, 91(3–4), pp. 155–176. doi:https://doi.org/10.1016/S0022-2313(00)00229-5.
  2. Dorenbos, P. (2000) ‘5d-level energies of Ce 3+ and the crystalline environment. I. Fluoride compounds’, Physical Review B, 62(23), pp. 15640–15649. doi:https://doi.org/10.1103/PhysRevB.62.15640.

  3. Dorenbos, P. (2000) ‘5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds’, Physical Review B, 62(23), pp. 15650–15659. doi: https://doi.org/10.1103/PhysRevB.62.15650.

  4. Dorenbos, P. (2001) ‘5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes’, Physical Review B, 64(12). doi:https://doi.org/10.1103/PhysRevB.64.125117.

  5. Dorenbos, P. (2002) ‘5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides’, Journal of Luminescence, 99(3), pp. 283–299. doi:https://doi.org/10.1016/S0022-2313(02)00347-2.

  6. Srivastava, A.M. (2016) ‘Aspects of pr3+ luminescence in solids’, Journal of Luminescence, 169, pp. 445–449. doi:https://doi.org/10.1016/j.jlumin.2015.07.001.

  7. Zych, A. et al. (2012) ‘Analysis of the radiative lifetime of Pr3+ d-f emission’, Journal of Applied Physics, 112(1). doi:https://doi.org/10.1063/1.4731735.